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1. Introduction

The AdS/CFT correspondence [1 – 3] (see [4] for a review) provides a new non-perturbative

approach to strongly coupled gauge theories. This duality relates a string theory in (d+1)-

dimensional anti de Sitter spacetime (times a compact space) to a d-dimensional conformal

field theory. The AdS/CFT correspondence can be extended to the string/gauge dual-

ity, which is a generalization to non-conformal and non-supersymmetric theories. The

string/gauge duality also provides us with a useful tool for the analysis of low energy be-

haviors of QCD such as the confinement and the spontaneous chiral symmetry breaking.

This approach is often called the holographic QCD [5 – 14] (and references therein).

One of the most interesting phenomena of the low energy QCD is the spontaneous

breaking of the chiral symmetry. In the holographic approach the chiral symmetry can be

realized in two different ways. In this approach one introduces Nc color Dq-branes and

Nf flavor Dp-branes. The U(Nc) gauge field on the Dq-branes represents a gluon field of

a QCD-like theory. Open strings connecting the Dq-branes and the Dp-branes represent

quarks in the fundamental representation of U(Nc). When these brane configurations have

directions transverse to both of the Dq and Dp-branes, a rotational symmetry in these

directions can be understood as a chiral symmetry of the dual gauge theories in certain

cases [7 – 12]. One can separate color branes and flavor branes in such directions. The

asymptotic distance between these branes is identified with a quark mass. So one can study
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the spontaneous chiral symmetry breaking starting from a theory with a non-vanishing

quark mass and taking the massless limit. So far only the Abelian chiral symmetry U(1)V
× U(1)A is considered in this approach.

Alternatively, the chiral symmetry can be realized as a gauge symmetry on the flavor

branes. When Dp-Dp-brane pairs are used as flavor branes, one can obtain a non-Abelian

U(Nf )L × U(Nf )R chiral symmetry [13 – 20]. These configurations of physical interest

often do not have directions transverse to both of the color and flavor branes. Therefore,

it is not obvious how to introduce a quark mass in these models. For work toward an

introduction of a quark mass in this type of models and on related issues see refs. [21 – 25].

In both of these two approaches, the spontaneous breaking of the chiral symmetry is closely

related to the configurations of the probe branes in the background geometry.

The chiral symmetry breaking was also discussed at finite temperature [7, 8, 26 – 31]

and at finite chemical potential [32 – 37]. The temperature T is related to a period δtE of

the S1 compactified Euclidean time coordinate as T = 1/δtE . The chemical potential µ is

introduced as a non-vanishing asymptotic value of the time component of the gauge field

on the probe brane A0 ∼ µ. One can study a chiral phase transition and obtain a phase

diagram of the QCD-like theories.

The purpose of the present paper is to study the chiral symmetry breaking in general

intersecting Dq/Dp brane systems consisting of Nc color Dq-branes and a single probe Dp-

brane with an s-dimensional intersection. They are holographic duals of QCD-like theories

in (s + 1)-dimensional spacetime QCDs+1 in certain cases. As in refs. [7, 8] these models

can have directions transverse to both of the Dq and Dp-branes. A rotational symmetry of

these directions can be interpreted as a chiral symmetry in certain cases. This symmetry

can be non-Abelian in contrast to the models in refs. [7, 8]. We can separate the Dq-branes

and the Dp-brane in these transverse directions and break the rotational symmetry. In

the holographic description this deformation makes quarks on the intersection massive and

leads to an explicit chiral symmetry breaking. In the near horizon limit and the large

Nc limit we can treat the Dq-branes as a background geometry and the Dp-brane as a

probe which does not affect this background. We discuss the chiral symmetry breaking by

analyzing the Dp-brane dynamics in the Dq-brane background geometry.

The organization of this paper is as follows. In section 2 we study the low energy

spectrum at an s-dimensional intersection of the Dq/Dp brane system. In general dual

theories are defect field theories [38, 39]. We are interested in field theories without defects.

There are systems corresponding to QCD-like theories at the intersection. In particular, the

D2/D4 model with s = 1, the D3/D5 model with s = 2 and the D4/D6 model with s = 3

correspond to QCD2, QCD3 and QCD4, respectively. For certain (q, p, s) the rotational

symmetry of the transverse directions can be understood as a chiral symmetry in the

QCD-like theories. This chiral symmetry is non-Abelian SU(2)L × SU(2)R for QCD2.

In section 3 we study the chiral symmetry breaking in the QCD-like theories by using

a supergravity analysis. The near horizon limit and the large Nc limit Nc ≫ 1 allow us to

study the probe Dp-brane dynamics in the Dq-brane background. We find that a Dp-brane

embedding breaks the rotational symmetry of the transverse directions. This corresponds

to a chiral symmetry breaking in the QCD-like theories. The quark mass mq and the quark
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condensate
〈

ψ̄ψ
〉

can be read from the asymptotic behavior of the Dp-brane embedding.

There is a non-zero value of the quark condensate
〈

ψ̄ψ
〉

even for the massless quark limit.

This leads to a spontaneous chiral symmetry breaking in the QCD-like theories.

In section 4 we consider fluctuations of the Dp-brane around the vacuum embedding

discussed in section 3. For mq = 0 there appear (8−q−p+s) massless scalar bosons, which

can be understood as the Nambu-Goldstone (NG) bosons associated with the spontaneous

symmetry breaking. For a non-zero but small quark mass there appear pseudo-NG bosons.

We show that these pseudo-NG bosons satisfy the Gell-Mann-Oakes-Renner (GMOR) re-

lation [40]. The effective action of the fluctuations is obtained at quartic order.

In section 5 we discuss the theories at finite temperature. We study the probe Dp-

brane dynamics in the Euclidean Dq background. The Dp-brane embedding breaks the

rotational symmetry as in the zero temperature case. Then the chiral symmetry is also

broken at finite temperature. We find that the quark condensate vanishes and the chiral

symmetry is restored only in the high temperature limit. We also study the models with

s = q. We conclude in section 6.

2. General setup

We consider an intersecting brane system consisting of Nc color Dq-branes and a single

probe Dp-brane

x0 · · · xs xs+1 · · · xq xq+1 · · · xq+p−s xq+p−s+1 · · · x9

Nc Dq ◦ · · · ◦ ◦ · · · ◦ − · · · − − · · · −

Dp ◦ · · · ◦ − · · · − ◦ · · · ◦ − · · · −

(2.1)

with xq being a coordinate of S1. It has an s-dimensional intersection in the directions

x1, . . . , xs. The configuration (2.1) is a T-dual of Ds′/D9 system with s′ = 9−(q+p−2s) ≥

s. Following ref. [19] we call it a transverse intersection if s′ = s (q+ p− s = 9) and a non-

transverse intersection if s′ > s (q+p−s < 9). Non-transverse intersections have directions

transverse to both of the Dq-branes and the Dp-brane, while transverse intersections do

not.

The configuration (2.1) has the following symmetries. The gauge symmetry of this

system is U(Nc) × U(1). The U(1) gauge symmetry on the Dp-brane is regarded as a

global symmetry (baryon number symmetry) of an (s+ 1)-dimensional field theory at the

intersection. The ten-dimensional Lorentz symmetry SO(1, 9) is broken to its subgroup

by the configuration (2.1). Therefore the global symmetry preserved at the intersection

contains

SO(1, s) × SO(9 − q − p+ s) × U(1), (2.2)

where SO(1, s) is the Lorentz symmetry at the intersection and SO(9 − q − p + s) is the

rotational symmetry in the directions xq+p−s+1, . . . , x9.

The spectrum of the theory localized at the intersection is as follows. Massless fields

generated by q-q strings (open strings having both ends on the Dq-branes) are a gauge field

Aµ (µ = 0, 1, . . . , s), scalar fields Φi (i = s + 1, . . . , 9) and fermionic fields S. Imposing

– 3 –



J
H
E
P
0
2
(
2
0
0
8
)
0
0
3

0 1 2 3 4 5 6 7 8 9

color D2 ◦ ◦ ◦ − − − − − − −

probe D4 ◦ ◦ − ◦ ◦ ◦ − − − −

color D3 ◦ ◦ ◦ ◦ − − − − − −

probe D5 ◦ ◦ ◦ − ◦ ◦ ◦ − − −

color D4 ◦ ◦ ◦ ◦ ◦ − − − − −

probe D6 ◦ ◦ ◦ ◦ − ◦ ◦ ◦ − −

Table 1: The Dq/D(q + 2) brane configurations with #ND = 4. From top to bottom these are

dual to QCD2, QCD3 and QCD4, respectively.

the periodic boundary condition for the bosonic fields and the anti-periodic one for the

fermionic fields along the compact xq direction, the fermions become massive at zero mode

and supersymmetry is explicitly broken at low energy. Then the scalars acquire mass at

one-loop level. Thus only the gauge field Aµ is massless at low energy. This gives a pure

U(Nc) gauge theory.

To study the lowest modes generated by q-p strings (open strings connecting the Dq-

branes and the Dp-brane), we note the zero-point energy in the R sector and the NS

sector [41]

aR = 0, aNS =
#ND − 4

8
, (2.3)

where #ND = q+p−2s = 9−s′ is the number of spatial coordinates of open strings which

have the Neumann boundary condition for one end and the Dirichlet one for the other

end. The lowest modes generated by q-p strings in the NS sector are massive for #ND > 4

(#ND = 6, 8), massless for #ND = 4 and tachyonic for #ND < 4 (#ND = 0, 2). We

do not consider the tachyonic case #ND < 4. When #ND ≥ 4, the lowest modes from

the NS sector are massive (by loop effects for #ND = 4) and are decoupled at low energy.

There are only massless fermions from the R sector. They belong to representations of the

Clifford algebra for the NN and DD directions. These fermions belong to the fundamental

representation of U(Nc) and are called “quarks”.

In general the Dq/Dp configuration (2.1) is dual to a defect field theory [38, 39]. We

only consider the case s + 1 = q, which corresponds to a theory without defects. We are

interested in non-transverse intersections satisfying s′ > s, which implies s < 9 − #ND.

Possible cases are s = 1, 2, 3, 4 for #ND = 4 (p = q + 2) and s = 1, 2 for #ND = 6

(p = q + 4). The configurations with #ND = 6 do not preserve supersymmetry and

are most likely unstable. We further restrict ourselves to the cases s = 1, 2, 3 since

we are especially interested in theories in four and lower dimensions. To summarize, we

consider the Dq/D(q + 2) configurations for q = 2, 3, 4 compactified on xq shown in

table 1. The effective theory on the intersection at low energy is an (s + 1)-dimensional

non-supersymmetric U(Nc) gauge theory with quarks in the fundamental representation.

We call this theory “QCDs+1” for the sake of convenience.

Since these configurations are non-transverse intersections, there are directions trans-

verse to both of the Dq-branes and the Dp-brane. In refs. [7, 8] the rotational symmetry
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SO(9 − q − p+ s) of such directions is interpreted as a chiral symmetry in the dual gauge

theory for certain sets of (q, p, s). When the Dq-branes and the Dp-brane are separated

along these directions, quarks on the intersection become massive and the chiral symmetry

is explicitly broken. As we will see in section 3, only when aNS = 0 (#ND = 4) and

p − s − 2 > 0, which are satisfied for the configurations in table 1, an equation for probe

brane embeddings derived from the DBI action has a solution for which the distance be-

tween the color branes and the probe brane asymptotically approaches a constant value.

This distance is interpreted as a quark mass.

We can explicitly write down the symmetry (2.2) for the configurations in table 1.

In the D2/D4 model, which has a one-dimensional intersection and is dual to QCD2, we

can identify the SO(4)6789 rotational symmetry in the x6, x7, x8, x9 directions with an

SU(2)L × SU(2)R chiral symmetry of quarks. Indeed, the GSO projection in the R sector

of open strings requires that the chiralities of SO(1, 1)01 and SO(4)6789 are correlated.

Left-handed (right-handed) quarks of SO(1, 1)01 have the positive (negative) chirality of

SO(4)6789 and transform as (2,1) ((1,2)) under SU(2)L × SU(2)R. The gauge symmetry

U(1) on the probe brane acts on quarks as a baryon number symmetry U(1)V . Therefore

the global symmetry (apart from the Lorentz symmetry) of QCD2 at the intersection is

SO(4)6789 × U(1) ∼ SU(2)L × SU(2)R × U(1)V . (2.4)

Thus we can realize a non-Abelian chiral symmetry in a holographic model of this type,

although spacetime is two-dimensional.

In the D3/D5 model, which has a two-dimensional intersection and is dual to QCD3,

we can identify the SO(3)789 rotational symmetry in the x7, x8, x9 directions with an SU(2)

symmetry of QCD3. Then the global symmetry of QCD3 at the intersection is

SO(3)789 × U(1) ∼ SU(2) × U(1). (2.5)

Quarks transform as 2 under SU(2). Note that there is no chirality in QCD3 and therefore

the symmetry (2.5) is not a chiral symmetry.

Finally, in the D4/D6 model, which has a three-dimensional intersection and is dual

to QCD4, we can identify the SO(2)89 rotational symmetry in the x8, x9 directions with an

axial U(1)A symmetry of QCD4 as discussed in refs. [7, 8]. The global symmetry of QCD4

at the intersection is

SO(2)89 × U(1) ∼ U(1)A × U(1)V . (2.6)

3. Chiral symmetry breaking from supergravity analysis

The dynamics of a strongly coupled large Nc gauge theory can be analyzed by supergravity.

We study the chiral symmetry breaking in this section. The near horizon limit and the

large Nc limit Nc ≫ 1 allow us to treat the Dq-branes as a background geometry and the

Dp-brane as a probe which does not affect this background. We will find that the Dp-brane

embedding breaks the SO(9 − q − p+ s) rotational symmetry in the directions transverse

to both of the branes. This can be interpreted as the chiral symmetry breaking in QCD2
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and QCD4. We will calculate the quark condensate and find a non-zero value even in the

massless quark limit. Although we are most interested in the configurations in table 1, we

will give formulae for the configuration (2.1) with general q, p, s.

3.1 Dq-brane background

The near horizon geometry of S1 compactified Nc Dq-branes is [42]

ds2 =

(

U

R

)
7−q

2

(

−dt2 +

q−1
∑

i=1

(

dxi
)2

+ f(U)(dxq)2

)

+

(

R

U

)
7−q

2
(

dU2

f(U)
+ U2dΩ2

8−q

)

,

f(U) = 1 −

(

UKK

U

)7−q

,

R7−q = (4π)
5−q

2 Γ
(

7−q
2

)

gsNc ℓ
7−q
s , (3.1)

where dΩ2
8−q, gs and ℓs are the metric of a unit S8−q, the string coupling and the string

length, respectively. xq is a coordinate of S1 and its period is denoted as δxq = 2π/MKK.

MKK is a compactification scale. To avoid a conical singularity at U = UKK in the U -xq

plane the period must be related to a constant UKK as

δxq =
4π R

7−q

2

(7 − q) U
5−q

2
KK

. (3.2)

The dilaton field and the Ramond-Ramond (RR) flux are given by

eφ = gs

(

R

U

)

(7−q)(3−q)
4

, F8−q =
Nc

V8−q
ǫ8−q, (3.3)

where ǫ8−q and V8−q are the volume form and the volume of a unit S8−q.

The relations between the parameters in the gauge theory and those in the string

theory are

g2
q+1 = (2π)q−2gs ℓ

q−3
s , MKK =

7 − q

2 (4π)
5−q

4 Γ(7−q
2 )

1
2

U
5−q

2
KK

(gsNc)
1
2 ℓ

7−q

2
s

, (3.4)

where gq+1 is the (q + 1)-dimensional gauge coupling. The (q + 1)-dimensional ’t Hooft

coupling is defined as

λq+1 =
g2
q+1Nc

(2π)q−2
. (3.5)

Note that the supergravity description is valid for [42, 19]

1 ≪ λq+1

(

UKK

ℓ2s

)q−3

≪ N
4

7−q

c . (3.6)

We introduce isotropic coordinates in the directions (U,Ω8−q) to simplify the following

analysis. Introducing a new radial coordinate ρ defined by

U =

(

ρ
7−q

2 +
U7−q

KK

4ρ
7−q

2

)
2

7−q

, ρ2 =

9
∑

α=q+1

(xα)2 (3.7)
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the metric for the transverse space (U,Ω8−q) in eq. (3.1) can be written as

(

R

U

)
7−q

2
(

dU2

f(U)
+ U2dΩ2

8−q

)

= K(ρ)
(

dρ2 + ρ2dΩ2
8−q

)

= K(ρ)

9
∑

α=q+1

(dxα)2, (3.8)

where

K(ρ) =
R

7−q

2 U
q−3
2

ρ2
. (3.9)

We divide the coordinates xq+1, . . . , x9 into two parts and introduce spherical coordinates

(λ,Ωp−s−1) for the xq+1, . . . , xq+p−s directions and (r,Ω8−q−p+s) for the xq+p−s+1, . . . , x9

directions. Then the Dq background becomes

ds2 =

(

U

R

)
7−q

2

(

−dt2 +

q−1
∑

i=1

(dxi)2 + f(U)(dxq)2

)

+K(ρ)
(

dλ2 + λ2dΩ2
p−s−1 + dr2 + r2dΩ2

8−q−p+s

)

, (3.10)

where ρ2 = λ2+r2. We will wrap the probe Dp-brane around Sp−s−1 in the next subsection.

3.2 Dp-brane embeddings

We study the dynamics of a Dp-brane in the Dq background. In the limit Nc ≫ 1 the

Dp-brane is introduced into the Dq background as a probe, which does not affect the

background geometry. The dynamics of the probe Dp-brane in the background (3.10) is

described by the Dirac-Born-Infeld (DBI) action

SDp = −Tp

∫

dp+1x e−φ
√

− det gMN , (3.11)

where gMN (M,N = 0, 1, . . . , p) is the induced metric on the world-volume and Tp is the

tension of the Dp-brane. For simplicity we have ignored the gauge field on the probe

Dp-brane.

We use a physical gauge for Dp-brane world-volume reparametrizations and use the

spacetime coordinates xµ (µ = 0, 1, . . . , s), λ, Ωp−s−1 as the world-volume coordinates.

Then the configurations of the Dp-brane are determined by xi (i = s + 1, . . . , q), r and

Ω8−q−p+s as a function of those world-volume coordinates. We make an ansatz

xs+1, . . . , xq = constant, r = r(λ), θa = constant, (3.12)

where θa (a = 1, 2, . . . , 8 − q − p+ s) are coordinates of S8−q−p+s.

With this ansatz, the induced metric on the Dp-brane is

ds2 =

(

U

R

)
7−q

2

ηµνdx
µdxν +K(ρ)

[(

1 + (r′)2
)

dλ2 + λ2dΩ2
p−s−1

]

, (3.13)
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where r′ = dr
dλ

. Then the DBI action of the Dp-brane becomes

SDp = −T̃pVp−s−1

∫

ds+1x

∫

dλ ρα

(

1 +
U7−q

KK

4ρ7−q

)β

λp−s−1
√

1 + (r′)2, (3.14)

where T̃p ≡ g−1
s TpR

−α and Vp−s−1 is the volume of Sp−s−1. The parameters α and β are

defined as

α =
1

4
(7 − q)(4 + 2s− q − p) , β =

1

2
(4 + 2s− q − p) +

2(p − s)

7 − q
. (3.15)

The action (3.14) leads to the equation of motion for r(λ)

d

dλ



ρα

(

1 +
U7−q

KK

4ρ7−q

)β
λp−s−1 r′
√

1 + (r′)2



 =
∂

∂r



ρα

(

1 +
U7−q

KK

4ρ7−q

)β


λp−s−1
√

1 + (r′)2. (3.16)

As in refs. [7, 8] we are interested in the situation in which the asymptotic distance be-

tween the Dq-branes and the Dp-brane is a finite constant r∞. This constant is proportional

to the quark mass. Therefore we impose the boundary conditions for λ→ ∞

r(λ)|λ→∞ = r∞, r′(λ)|λ→∞ = 0. (3.17)

Then, eq. (3.16) can be linearized at large λ as

d

dλ

(

λα+p−s−1r′
)

= α λα+p−s−3 r, (3.18)

and the asymptotic behavior of the solution is

r(λ) ∼ aλk+ + bλk
− , (3.19)

where a, b are constants and

k± =
−(α+ p− s− 2) ±

√

(α+ p− s− 2)2 + 4α

2
. (3.20)

For the boundary condition (3.17) to be satisfied, we must require α = 0 and p− s−2 > 0.

The first condition implies that the ground states of the NS sector of q-p strings are massless

since α = −2(7 − q)aNS as seen from eq. (2.3). Then, the asymptotic behavior of r(λ) is

r(λ) ∼ r∞ + c λ−(p−s−2), (3.21)

where c is a constant. As in ref. [8] the quark condensate
〈

ψ̄ψ
〉

can be calculated by

differentiating the vacuum energy density derived from the DBI action (3.14) with respect

to the quark mass mq. Thus we obtain the quark mass and the quark condensate in terms

of the constants r∞ and c as

mq =
r∞

2πℓ2s
,

〈

ψ̄ψ
〉

= −2π(p− s− 2) ℓ2s T̃pVp−s−1 c. (3.22)
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Figure 1: Solutions of eq. (3.16) for various values of r∞ in (a) the D2/D4 model with s = 1 and

(b) the D3/D5 model with s = 2.

We have numerically solved eq. (3.16) for all possible values of q, p, s satisfying α = 0,

p− s− 2 > 0, s ≤ 3. The solutions of the D2/D4 model with s = 1 and the D3/D5 model

with s = 2 are plotted in figure 1 for various values of r∞. The variables λ and r in these

figures denote dimensionless ones rescaled by appropriate powers of UKK. The leftmost

curve in these figures represents U = UKK. Its interior U < UKK is not a part of the space

that we are considering. All the solutions have similar behaviors to those of the D4/D6

model with s = 3, which was studied in ref. [8]. The solutions approach a constant value

r∞ for λ = ∞, while they reach a point outside of the curve U = UKK at λ = 0. The

solutions break the rotational symmetry SO(9 − q − p + s) in the (r, Ω8−q−p+s) space to

SO(8 − q − p+ s).

We have also numerically calculated the quark condensate as a function of the quark

mass c = c(r∞) for all possible values of q, p, s satisfying α = 0, p − s − 2 > 0, s ≤ 3. It

is plotted in figure 2 for the D2/D4 model with s = 1 and the D3/D5 model with s = 2.

The variables r∞ and c in these figures denote dimensionless ones rescaled by appropriate

powers of UKK. For all cases we find a non-zero quark condensate for r∞ = 0. This

agrees with a field theoretical view point. In QCD we expect that the chiral symmetry is

spontaneously broken by the non-zero quark condensate even for mq = 0.

Finally, we write down a pattern of the symmetry breaking explicitly. For the D2/D4

model with s = 1 it is

SU(2)L × SU(2)R × U(1)V → SU(2)V × U(1)V , (3.23)

for the D3/D5 model with s = 2

SU(2) × U(1) → U(1) × U(1), (3.24)

and for the D4/D6 model with s = 3 [8]

U(1)A × U(1)V → U(1)V . (3.25)
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Figure 2: The quark condensate as a function of the quark mass for (a) the D2/D4 model with

s = 1 and (b) the D3/D5 model with s = 2.

4. NG bosons as fluctuations of the probe brane

In this section we study fluctuations of the probe brane around the vacuum embedding.

In the previous section we have seen that the vacuum embedding breaks SO(9− q− p+ s)

rotational symmetry in the (r,Ω8−q−p+s) space to SO(8−q−p+s). This symmetry breaking

corresponds to the chiral symmetry breaking for certain sets of (q, p, s). Therefore, there

should be (8 − q − p + s) Nambu-Goldstone (NG) bosons associated with the symmetry

breaking. If quarks are massless these bosons are massless NG bosons. On the other hand,

if quarks are massive these are pseudo-NG bosons with a non-vanishing mass. We will

show that these pseudo-NG bosons satisfy the Gell-Mann-Oakes-Renner (GMOR) relation

for a small quark mass mq. We will also give the effective action of the fluctuations at

quartic order. These results are a generalization of those of the D4/D6 system studied in

ref. [8] to the Dq/Dp systems.

4.1 Fluctuations around the vacuum embeddings

We study fluctuation modes around the vacuum Dp-brane embedding

xs+1, . . . , xq = constant, r = rvac(λ), θa = 0 + δθa(xM ), (4.1)

where rvac is the vacuum embedding determined numerically in the previous section. For

simplicity we concentrate on fluctuations of θa. In general, these fluctuations depend on all

of the world-volume coordinates xM of the Dp-brane. We will see that the fluctuations δθa

are identified with the (pseudo-)NG bosons for the breaking of the rotational symmetry of

S8−q−p+s (a subspace of the (r, Ω8−q−p+s) space).

The induced metric on the Dp-brane world-volume is

ds2 =

(

U

R

)
7−q

2

ηµνdx
µdxν +K(ρ)

[(

1 + (r′vac)
2
)

dλ2 + λ2dΩ2
p−s−1

]

+K(ρ)r2vacγab∂Mδθ
a∂Nδθ

bdxMdxN , (4.2)
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where ρ2 = λ2 + r2vac and γab is the metric of a unit S8−q−p+s. Then the DBI action of the

Dp-brane (3.11) to quadratic order becomes

SDp = Svac + Sδθ, (4.3)

where Svac is the action for the vacuum embedding, i.e., eq. (3.14) for r = rvac, and Sδθ is

the action for the fluctuations δθa. After some simple calculations we obtain the action for

δθa

Sδθ=−T̃p

∫

dp+1x
√

det γαβ λ
p−s−1

√

1 + (r′vac)
2

×

(

1 +
U7−q

KK

4ρ7−q
vac

)β
K

2
gMNr2vacγab∂Mδθ

a∂Nδθ
b (4.4)

and the equation of motion

(

7 − q

2

)2 U5−q
KK

M2
KK

ρ−(7−q)
vac

(

1 +
U7−q

KK

4ρ7−q
vac

)β−
2(5−q)
7−q

r2vac∂µ∂
µδθa

+
1

λp−s−1
√

1 + (r′vac)
2

∂

∂λ





(

1 +
U7−q

KK

4ρ7−q
vac

)β
λp−s−1r2vac
√

1 + (r′vac)
2

∂

∂λ
δθa





+

(

1 +
U7−q

KK

4ρ7−q
vac

)β
r2vac
λ2

∇2δθa = 0, (4.5)

where γαβ and ∇2 are the metric and the Laplacian on a unit Sp−s−1.

We can write a solution of the equation of motion (4.5) in a form

δθa = F a(λ)Y (Ωp−s−1) e
ik·x, (4.6)

where Y (Ωp−s−1) is the spherical harmonics on Sp−s−1. We consider the zero (constant)

mode of Y and study only lowest-mass modes for simplicity. Substituting eq. (4.6) into

eq. (4.5) we obtain an eigenvalue equation for the (s+ 1)-dimensional mass M2
θ = −kµkµ.

Although we can solve eq. (4.5) by numerical calculations as in ref. [8], here we are content

with asymptotic solutions of a linearized equation of motion for λ → ∞. Taking account

of the asymptotic behavior of rvac in eq. (3.21) the first term of eq. (4.5) is sub-leading and

the linearized equation for λ→ ∞ becomes

∂

∂λ

(

λp−s−1r2vac
∂

∂λ
δθa

)

= 0. (4.7)

Depending on the value r∞ in eq. (3.21) the general solution is

δθa ∼

{

aλp−s−2 + b (r∞ = 0)

a+ bλ−(p−s−2) (r∞ 6= 0),
(4.8)

where a, b are independent of λ. Since p− s−2 > 0, these solutions are normalizable when

a = 0.
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The non-linear equation of motion (4.5) has exact solutions δθa = F aeik·x (F a =

constant), which have an eigenvalue Mθ = 0. From the above results on the asymptotic

behaviors these solutions are normalizable only when r∞ = 0. Since r∞ = 0 means

vanishing quark mass mq = 0, the normalizable solutions with Mθ = 0 can be regarded

as the NG bosons associated with the spontaneous breaking of the rotational symmetry

SO(9 − q − p + s). When r∞ 6= 0 (mq 6= 0), the quark mass term explicitly breaks the

chiral symmetry and we do not expect massless bosons. However, for small quark mass mq

there should exist pseudo-NG bosons with a small mass Mθ, which we consider in the next

subsection.

In two dimensions there exists no massless NG boson associated with a spontaneous

symmetry breaking [43]. We have seen that there appear massless bosons even in the

D2/D4 model with a one-dimensional intersection when quarks are massless. These mass-

less bosons should be an artifact of the large Nc limit and should become massive if we

take into account contributions from higher orders in the 1/Nc expansion. The situation

is similar to the case of the Gross-Neveu model in two dimensions [44], in which massless

bosons appear in the large N limit.

4.2 Light pseudo-NG bosons and the GMOR relation

As we have seen above, the embeddings with r∞ = 0 and those with r∞ 6= 0 have different

properties. For the r∞ = 0 embeddings the asymptotic distance between Dq and Dp-branes

is zero and the quarks at the intersection are massless. There are (8 − q − p+ s) massless

scalars δθa in the spectrum, which can be identified with the NG bosons associated with

the spontaneous symmetry breaking SO(9− q − p+ s) → SO(8− q− p+ s). We call these

NG bosons pions. On the other hand, for the r∞ 6= 0 embeddings quarks are massive and

the vacuum embedding explicitly breaks the rotational symmetry SO(9 − q − p + s) even

for the asymptotic region λ→ ∞. In this case the fluctuations δθa are pseudo-NG bosons

with a non-vanishing mass Mθ.

We can show the Gell-Mann-Oakes-Renner (GMOR) relation [40]

M2
θ = −

mq

〈

ψ̄ψ
〉

f2
π

. (4.9)

for a small quark mass mq by using the holographic method [8]. Here, fπ is the pion decay

constant. We begin with the r∞ = 0 embedding and make a small change r∞ = δr∞. This

gives a small mass to quarks. As shown in ref. [8] the mass of the pseudo-NG bosons Mθ

can be obtained by using a standard perturbation theory in quantum mechanics and is

written as

M2
θ = (p− s− 2)

c̄ δr∞
∫

dλ µ̄
, (4.10)

where c̄ is the coefficient in eq. (3.21) and µ̄ is given by

µ̄ =

(

7 − q

2

)2 U5−q
KK

M2
KK

ρ̄−(7−q)
vac

(

1 +
U7−q

KK

4ρ̄7−q
vac

)β−
2(5−q)
7−q

r̄2vac λ
p−s−1

√

1 + (r̄′vac)
2. (4.11)
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Here and in the following, quantities with a bar denote those for the r∞ = 0 embedding.

The quantities δr∞ and c̄ are related to the quark mass and the quark condensate as

in eq. (3.22). The pion decay constant fπ can be read from the effective action of δθa.

Assuming that δθa depend only on the coordinates of the intersection xµ (µ = 0, 1, . . . , s)

and integrating over λ and Ωp−s−1 in eq. (4.4) we obtain

Sδθ = −f2
π

∫

ds+1x
1

2
γab ∂µδθ

a∂µδθb, (4.12)

where fπ is given by

f2
π = T̃pVp−s−1

∫

∞

0
dλ µ̄. (4.13)

Using eqs. (3.22), (4.13) in eq. (4.10), we obtain the GMOR relation (4.9).

4.3 The pion effective action

We can write down the effective action of the pion fields δθa at the intersection beyond the

quadratic order. We assume that δθa depend only on the coordinates of the intersection

xµ (µ = 0, 1, . . . , s). By expanding the DBI action (3.11) for the induced metric (4.2) to

quartic order in δθa we obtain

Sδθ = −

∫

ds+1x

(

f2
π

2
γab∂µ(δθa)∂µ(δθb) +

h1

4

[

γab∂µ(δθa)∂µ(δθb)
]2

(4.14)

−
h2

4

[

γab∂µ(δθa)∂ν(δθb)
] [

γcd∂
µ(δθc)∂ν(δθd)

]

)

,

where fπ is the pion decay constant (4.13) and the constants h1, h2 are given by

2h1 = h2 = T̃pVp−s−1

(

7 − q

2

)4 U
2(5−q)
KK

M4
KK

∫

dλ ρ−2(7−q)
vac

×

(

1 +
U7−q

KK

4ρ7−q
vac

)β−
4(5−q)
7−q

r4vac λ
p−s−1

√

1 + (r′vac)
2. (4.15)

The relative coefficients of the quartic terms are different from those assumed in the Skyrme

model [45, 46] h1 = h2. This is in contrast with another approach [13] to the holographic

QCD, in which the relation h1 = h2 of the Skyrme model was obtained.

5. Finite temperature analysis

To study the theory at finite temperature we introduce a periodic Euclidean time coordinate

tE ≡ it ∼ tE + δtE . The period of tE is the inverse temperature δtE = 1/T . Then there

are two periodic coordinates tE and xq. There exist two possible Euclidean geometries

which have an appropriate asymptotic behavior. One of them is the Euclidean version of

eq. (3.1). The other is the Euclidean version of the non-extremal black Dq-brane geometry

ds2 =

(

U

R

)
7−q

2

(

f̃(U)dt2E +

q−1
∑

i=1

(

dxi
)2

+ (dxq)2

)

+

(

R

U

)
7−q

2
(

dU2

f̃(U)
+ U2dΩ2

8−q

)

,

f̃(U) = 1 −

(

UT

U

)7−q

(5.1)
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with the dilaton and the RR-flux given in eq. (3.3). To avoid a conical singularity at

U = UT in the U -tE plane the period δtE is fixed as

δtE =
4πR

7−q

2

(7 − q)U
5−q

2
T

. (5.2)

It was shown [47, 8, 27] that the Euclidean version of the background (3.1) is dominant at

low temperature, while the background (5.1) is dominant at high temperature by comparing

values of the Euclidean supergravity action for these backgrounds. A phase transition

occurs at the temperature Tdeconf = MKK/(2π). This phase transition corresponds to a

confinement/deconfinement transition in the dual gauge theory [47].

We consider the probe brane dynamics in the high temperature phase. The probe brane

dynamics in the low temperature phase is essentially the same as at zero temperature. We

only consider the models with α = 0, p−s−2 > 0, s ≤ 3 as in the zero temperature phase.

With the ansatz (3.12) the induced metric on the Dp-brane in the background (5.1) can

be written as

ds2 =

(

U

R

)
7−q

2

(

f̃(U)dt2E +

s
∑

i=1

(dxi)2

)

+K(ρ)
[(

1 + (r′)2
)

dλ2 + λ2dΩ2
p−s−1

]

. (5.3)

Then the DBI action of the probe Dp-brane becomes

SDp = T̃pVp−s−1

∫

ds+1x

∫

dλ

(

1 +
U7−q

T

4ρ7−q

)β−1(

1 −
U7−q

T

4ρ7−q

)

λp−s−1
√

1 + (r′)2, (5.4)

which leads to the equation of motion for r(λ)

d

dλ





(

1 +
U7−q

T

4ρ7−q

)β−1(

1 −
U7−q

T

4ρ7−q

)

λp−s−1 r′
√

1 + (r′)2





=
∂

∂r





(

1 +
U7−q

T

4ρ7−q

)β−1(

1 −
U7−q

T

4ρ7−q

)



λp−s−1
√

1 + (r′)2. (5.5)

The asymptotic behavior of the solution r(λ) of eq. (5.5) for large λ is the same as in

the zero temperature case (3.21). The parameters r∞ and c are related to the quark mass

mq and the quark condensate
〈

ψ̄ψ
〉

as in eq. (3.22). We have numerically solved eq. (5.5)

for all possible values of q, p, s. All the solutions have similar behaviors to those for the

D4/D6 model with s = 3 discussed in refs. [8, 29, 31]. The solutions for the D2/D4 model

with s = 1 and the D3/D5 model with s = 2 are plotted in figure 3 for various values of

r∞. The variables λ and r in these figures (and figures 4, 5, 6 below) denote dimensionless

ones rescaled by appropriate powers of UT . The leftmost curve in these figures represents

U = UT .

We have also numerically calculated the quark condensate c = c(r∞). Here we are

interested in the phase structure of the system when the temperature T is varied for fixed
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Figure 3: Solutions of eq. (5.5) for various values of r∞ in (a) the D2/D4 model with s = 1 and

(b) the D3/D5 model with s = 2.
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Figure 4: The quark condensate as a function of temperature for (a) the D2/D4 model with s = 1,

(b) the D3/D5 model with s = 2. The solid (dashed) lines represent the contributions from the

embeddings which do (not) reach the horizon U = UT .

quark mass mq. The relation between T and r∞ can be obtained from eqs. (3.2), (3.4), (5.2)

as

T =
M̄

√

r5−q
∞

, M̄2 =
(7 − q)2m5−q

q MKK

4(4π)
5−q

2 Γ(7−q
2 )g2

qNc

, (5.6)

where gq = gq+1/δx
q is the q-dimensional Yang-Mills coupling and r∞ is the dimensionless

variable rescaled by UT . Using this relation the quark condensate as a function of the

temperature is plotted in figure 4. Note that the region near T = 0 in these figures is

not valid since the background (3.1) is dominant at low temperature T < Tdeconf. All the

condensates have similar behaviors to those of the D4/D6 model with s = 3 discussed in

refs. [8, 29, 31].

As was discussed in refs. [8, 29, 31] there are two types of embeddings. For sufficiently

large r∞ the probe brane does not reach the horizon U = UT . On the other hand, for
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0 1 2 3 4 5 6 7 8 9

color D1 ◦ ◦ − − − − − − − −

probe D5 ◦ ◦ ◦ ◦ ◦ ◦ − − − −

color D2 ◦ ◦ ◦ − − − − − − −

probe D6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ − − −

color D3 ◦ ◦ ◦ ◦ − − − − − −

probe D7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ − −

Table 2: The Dq/D(q + 4) brane configurations with #ND = 4.

sufficiently small r∞ it reaches the horizon U = UT . For an intermediate region of r∞
more than one embeddings, which can be either type of embeddings, are possible. The

physically realized embedding is the one with a minimal energy. Varying the value of r∞
a phase transition between these two types of embeddings occurs at a certain temperature

T = Tfund. This phase transition, however, does not affect the chiral symmetry of the

quarks in QCDs+1 because of the non-zero value of c for all temperature region except for

T → ∞.

The above finite temperature analysis can be applied to another type of brane config-

urations. Here we consider a non-compact limit MKK → 0 of the Dq/D(q + 4) model with

s = q at finite temperature. At zero temperature it is dual to a supersymmetric gauge

theory in (q + 1)-dimensions. The case q = 3 is the D3/D7 model at finite temperature

discussed in refs. [7, 29, 31]. The Dq/D(q + 4) configurations for q = 1, 2, 3 are shown in

table 2. The rotational symmetry SO(9 − p) in the directions transverse to both branes is

interpreted as a chiral symmetry for certain cases. In particular, the SO(4)6789 rotational

symmetry of the D1/D5 model with s = 1 is regarded as an SU(2)L × SU(2)R chiral sym-

metry and the SO(2)89 rotational symmetry of the D3/D7 model with s = 3 is regarded

as an axial U(1)A symmetry [7].

In the present case there are two possible background geometries. One of them is the

Euclidean AdSq+2 × S8−q, which is obtained by setting UKK = 0 in the Euclidean version

of the metric (3.1). The other is the Euclidean version of the Schwarzschild AdSq+2 ×

S8−q, which is given by the geometry (5.1) with non-compact xq. The phase transition

occurs between these two backgrounds [47]. The Euclidean AdSq+2 × S8−q is dominant at

low temperature, while the Euclidean Schwarzschild AdSq+2 × S8−q is dominant at high

temperature.

We consider the probe D(q + 4)-brane dynamics in the high temperature phase. The

induced metric and the equation of motion have the same form as (5.3) and (5.5) with

p = q + 4, s = q. The conditions α = 0, p − s − 2 > 0, s ≤ 3 require q = 1, 2, 3. We

have numerically solved eq. (5.5) for these configurations. All the solutions have similar

behaviors to those for the D3/D7 model with s = 3 [7, 29, 31]. The solutions for the

D1/D5 model with s = 1 and the D2/D6 model with s = 2 are plotted in figure 5 for

various values of r∞. We have also numerically calculated the quark condensate as a

function of the temperature. The results are plotted in figure 6. All the condensates have
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Figure 5: Solutions of eq. (5.5) for various values of r∞ in (a) the D1/D5 model with s = 1 and

(b) the D2/D6 model with s = 2.
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Figure 6: The quark condensate as a function of temperature for (a) the D1/D5 model with s = 1,

(b) the D2/D6 model with s = 2. The solid (dashed) lines represent the contributions from the

embeddings which do (not) reach the horizon U = UT .

similar behaviors to those of the D3/D7 model with s = 3 discussed in refs. [7, 29, 31].

Finally we note that a chemical potential for the baryon number can be introduced

by considering the U(1) gauge field on the probe Dp-brane [32, 33]. An asymptotically

non-vanishing Euclidean time component of the U(1) gauge field can be understood as a

chemical potential. It will be possible to discuss the phase diagram in the (µ, T ) space by

using this chemical potential as in refs. [36, 37].

6. Conclusion

In this paper we discussed the chiral symmetry breaking in the Dq/Dp model with an

s-dimensional intersection. There exist QCD-like theories at the intersection for certain

cases. We are interested in the models which have directions transverse to both of the

Dq and Dp-branes. The rotational symmetry in these directions can be identified with
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the chiral symmetry in certain cases. For instance, it is a non-Abelian chiral symmetry

SU(2)L×SU(2)R in the D2/D4 model with s = 1 corresponding to QCD2. In these models

we studied the dynamics of the probe Dp-brane in the Dq background at zero and at finite

temperature.

At zero temperature we found that the rotational symmetry in the transverse directions

is broken by a Dp-brane embedding. This corresponds to the chiral symmetry breaking in

QCDs+1. We numerically calculated the quark condensate
〈

ψ̄ψ
〉

as a function of the quark

mass mq. When s < q, we found that there is a non-zero quark condensate even for zero

quark mass and therefore the symmetry is spontaneously broken.

We also studied the fluctuations around the vacuum embeddings. In the massless

quark limit there appear (8 − q − p + s) massless scalar bosons, which are identified with

the NG bosons associated with the spontaneous symmetry breaking. For massive quarks

the symmetry is explicitly broken by a quark mass and there appear massive pseudo-NG

bosons. We showed that the pseudo-NG bosons satisfy the GMOR relation for a small

quark mass by using the holographic description. We also obtained the effective action

of the NG bosons at quartic order. This action is different from the one assumed in the

Skyrme model.

At finite temperature we found that the rotational symmetry is broken by the vacuum

configuration as in the zero temperature case. This corresponds to the chiral symmetry

breaking in QCDs+1. We also found that there is a non-zero quark condensate
〈

ψ̄ψ
〉

except

for T → ∞. The quark condensate vanishes and the chiral symmetry is restored only in

the high temperature limit. It will be interesting to study the theory at finite chemical

potential µ as well as at finite temperature T . Then we will be able to obtain the phase

diagram in the (µ, T ) space and discuss the chiral phase transition in the Dq/Dp model.
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